"/>

丝袜脚交免费网站xx-国产91丝袜在线播放-国产视频一区二区三区在线观看-午夜美女视频-午夜爽爽视频-制服丝袜先锋影音-天天躁日日躁狠狠躁喷水-日韩综合一区二区三区-99思思-日本体内she精视频-欧美精品免费播放-日韩欧美国产不卡-一级在线免费观看视频-韩国午夜理伦三级在线观看按摩房-伦乱激情视频

Scientists make breakthrough in AI navigational ability

Source: Xinhua    2018-05-14 19:25:31

LONDON, May 14 (Xinhua) -- Scientists have found ways for artificial intelligence (AI) to create navigational ability.

An artificial agent was developed to approximate grid cells, a type of neuron in the brains of many mammal species that allows them to understand their position in space, according to a research report published last week in the journal Nature.

By combining an artificial recurrent network with a larger network architecture, an agent was formed with a deep reinforcement learning ability to navigate itself to goals in challenging virtual reality game environments.

"This agent performed at a super-human level ... exhibited the type of flexible navigation normally associated with animals," said scientists at the London-headquartered Deepmind.

The study tested the theory that grid cells support vector-based navigation, enabling the mammalian brain to calculate the distance and direction to a desired destination.

The results also reflect the philosophy that algorithms used for AI can meaningfully approximate elements of the brain.

"In the future such networks may well provide a new way for scientists to conduct 'experiments', suggesting new theories and even complementing some of the work that is currently conducted in animals," according to Deepmind scientists.

Acquired by Google in 2016, Deepmind is the creator of AlphaGo that is focused on machine learning.

Editor: Li Xia
Related News
Xinhuanet

Scientists make breakthrough in AI navigational ability

Source: Xinhua 2018-05-14 19:25:31

LONDON, May 14 (Xinhua) -- Scientists have found ways for artificial intelligence (AI) to create navigational ability.

An artificial agent was developed to approximate grid cells, a type of neuron in the brains of many mammal species that allows them to understand their position in space, according to a research report published last week in the journal Nature.

By combining an artificial recurrent network with a larger network architecture, an agent was formed with a deep reinforcement learning ability to navigate itself to goals in challenging virtual reality game environments.

"This agent performed at a super-human level ... exhibited the type of flexible navigation normally associated with animals," said scientists at the London-headquartered Deepmind.

The study tested the theory that grid cells support vector-based navigation, enabling the mammalian brain to calculate the distance and direction to a desired destination.

The results also reflect the philosophy that algorithms used for AI can meaningfully approximate elements of the brain.

"In the future such networks may well provide a new way for scientists to conduct 'experiments', suggesting new theories and even complementing some of the work that is currently conducted in animals," according to Deepmind scientists.

Acquired by Google in 2016, Deepmind is the creator of AlphaGo that is focused on machine learning.

[Editor: huaxia]
010020070750000000000000011100001371782871