丝袜脚交免费网站xx-国产91丝袜在线播放-国产视频一区二区三区在线观看-午夜美女视频-午夜爽爽视频-制服丝袜先锋影音-天天躁日日躁狠狠躁喷水-日韩综合一区二区三区-99思思-日本体内she精视频-欧美精品免费播放-日韩欧美国产不卡-一级在线免费观看视频-韩国午夜理伦三级在线观看按摩房-伦乱激情视频

Scientists develop predictive model of hydrogen-nanovoid interaction

Source: Xinhua| 2019-07-17 18:19:22|Editor: mingmei
Video PlayerClose

HEFEI, July 17 (Xinhua) -- Chinese and Canadian scientists have developed a predictive model for hydrogen trapping and bubbling in nanovoids, which is crucial to the understanding of hydrogen-induced damage in structural materials.

Hydrogen, the most abundant element in existence, is a highly anticipated fuel for fusion reactions and thus an important focus of study. However, it can easily penetrate metal surfaces through the gaps between metal atoms and causes damage.

"The interplay between hydrogen and nanovoids has long been recognized as a key factor in hydrogen-induced damage in structural materials, yet it remains poorly understood," said Wu Xuebang, a researcher from the Institute of Solid State Physics, Chinese Academy of Sciences.

Based on fundamental quantum mechanics, the research team proposed using computer simulations to tackle the problem. After five years of efforts, the researchers, in cooperation with a Canadian team, have established a predictive model for quantitative determination of the configurations and energetics of hydrogen adatoms in nanovoids.

Hou Jie, the first author of the research paper, said that their model offers mechanistic insights for evaluating hydrogen-induced damage in nuclear fusion reactors, thus paving the way for harvesting fusion energy in the future.

The study was published in the latest issue of Nature Materials.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001382345691